The Development of Bioceramic Root Canal Sealer

Objectives: This study evaluated the physical properties of cockle shell derived bioceramic sealer (Biosealer) and compared it with commercial bioceramic sealer (iRoot SP).

Materials and Methods: Cockle shell derived tricalcium silicate powder was manufactured. Various additives were mixed with tricalcium silicate powder to modify the physical properties of Biosealer. According to a modified ISO 6876/2012 standard, the flowability, setting time, film thickness, solubility, and radiopacity of the Biosealer and iRoot SP were investigated.

Results: Biosealer exhibited acceptable flowability, setting time, film thickness, and radiopacity according to ISO6876/2012 requirements. There was no significant difference between the physical properties of Biosealer and iRoot SP, except for the setting time (p<0.05).

Conclusions: Biosealer possessed good physical properties and was comparable to iRoot SP.

1. Wang Z. Bioceramic materials in endodontics. Endod Topics. 2015;32(1):3-30.

2. Asawaworarit W, Pinyosopon T, Kijsamanmith K. Comparison of apical sealing ability of bioceramic sealer and epoxy resin-based sealer using the fluid filtration technique and scanning electron microscopy. J Dent Sci. 2020;15(2):186-92.

3. Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod. 2015;41(9):1469-73.

4. Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009;35(7):1051-5.

5. Chybowski EA, Glickman GN, Patel Y, Fleury A, Solomon E, He J. Clinical outcome of non-surgical root canal treatment using a single-cone technique with endosequence bioceramic sealer: a retrospective analysis. J Endod. 2018;44(6):941-5.

6. Zavattini A, Knight A, Foschi F, Mannocci F. Outcome of root canal treatments using a new calcium silicate root canal sealer: a non-randomized clinical trial. J Clin Med. 2020;9(3):782.

7. Mailafiya MM, Abubakar K, Danmaigoro A, Chiroma SM, Abdul Rahim EB, Mohd Moklas MA, et al. Cockle shell derived calcium carbonate (aragonite) nanoparticles: a dynamite to nanomedicine. Appl Sci. 2019;9(14):2897.

8. Ibiyeye KM, Zuki ABZ. Cockle shell derived aragonite CaCO3 nanoparticles for co-delivery of doxorubicin and thymoquinone eliminates cancer stem cells. Int J Mol Sci. 2020;21:1900.

9. Mailafiya MM, Mohd Moklas MA, Abubakar K, Danmaigoro A, Chiroma SM, Rahim EBA, et al. Cytotoxicity studies of curcumin loaded-cockle shell derived calcium carbonate nanoparticles. Nanosci Nanotechnol Asia. 2021;11(1):35-41.

10. Tram NXT. Synthesis and characterization of calcite nano-particle derived from cockle shell for clinical application. ASEAN Eng J. 2020;10:49-54.

11. Nugroho JJ, Natsir N, Trilaksana AC, Rovani CA, Atlanta MM. The increse of tooth enamel surface hardness after application blood cockle shells (Anadara granosa) paste as remineralization agent. Int J Appl Pharm. 2019;11(4):26-9.

12. Ferdynanto RA, Dharmayanti PES, Dewi PTK, Prananingrum W. The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity. DJMKG. 2018;51(3:)114-8.

13. Song J, Lee DW, Cho YH, Ok KM. Solid state synthesis, characterization, and nonlinear optical properties of a monoclinic tricalcium silicate, Ca3SiO5. B Korean Chem Soc. 2012;33(7):2423-6.

14. Chen CC, Ho CC, Lin SY, Ding SJ. Green synthesis of calcium silicate bioceramic powders. Ceram. 2015;41(4):5445-53.

15. Wu M, Wang T, Wang YY, Li F, Zhou M, Wu X. A novel and facile route for synthesis of fine tricalcium silicate powders. Mater Lett. 2018;227:187-90.

16. Grossman LI, Oliet S, Del Rio CE. Endodontic practice. 10th ed. Philadelphia: Lea & Febiger; 1981.

17. Camilleri J, Cutajar A, Mallia B. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material. Dent Mater. 2011;27(8):845-54.

18.Marciano MA, Duarte MA ,Camilleri J. Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite. Clin Oral Investig. 2015;19(9):2201-9.

19. Duarte MA, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, et al. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. Int Endod J. 2012;45(6):565-70.

20. Marciano MA, Guimaraes BM, Amoroso-Silva P, Camilleri M, Duarte MA. Physical and chemical properties and subcutaneous implantation of mineral trioxide aggregate mixed with propylene glycol. J Endod. 2016;42(3):474-9.

21. Tarannum N, Pooja K, Khan R. Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: a review. Constr Build Mater. 2020; 247.

22. Hewlett P, Liska M. Lea's Chemistry of Cement and Concrete. 5th ed. Burlington: Elsevier; 2019.

23. Zhou HM, Shen Y, Zheng W, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod. 2013;39(10):1281-6.

24. Candeiro GT, Correia FC, Duarte MA, Ribeiro-Siqueira DC, Gavini G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod. 2012;38(6):842-5.

25. Tanomaru-Filho M, Torres FFE, Chavez-Andrade GM, Ribeiro-Siqueira DC, Givini G. Physicochemical properties and volumetric change of silicone/bioactive glass and calcium silicate-based endodontic sealers. J Endod. 2017;43(12):2097-101.

26. Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015; 41(1):111-24.

27. Silva E, Cardoso ML, Rodrigues JP, De-Deus G, Fidalgo TKS. Solubility of bioceramic - and epoxy resin-based root canal sealers: a systematic review and meta-analysis. Aust Endod J. 2021.

28. Poggio C, Dagna A, Ceci M, Meravini MV, Colombo M, Pietrocola G. Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent. 2017;9:e1189-e94.

29. Milanovic I, Milovanovic P, Antonijevic D, Dzeletovic B, Djuric M, Miletic V. Immediate and long-term porosity of calcium silicate-based sealers. J Endod. 2020;46(4):515-23.

Oransakunwong S, Wasanapiarnpong T, Santiwong B, Linsuwanont P. The Development of Bioceramic Root Canal Sealer: Original articles. CM Dent J [Internet]. 2022 Jan 27 [cited 2024 Jul 15];43(1):65-69. Available from:

Oransakunwong, S., Wasanapiarnpong, T., Santiwong, B. & Linsuwanont, P. (2022). The Development of Bioceramic Root Canal Sealer. CM Dent J, 43(1), 65-69. Retrieved from:

Oransakunwong, S., Wasanapiarnpong Thanakorn,Santiwong Busayarat and Linsuwanont Pairoj. 2022. "The Development of Bioceramic Root Canal Sealer." CM Dent J, 43(1), 65-69.

Oransakunwong, S. et al. 2022. 'The Development of Bioceramic Root Canal Sealer', CM Dent J, 43(1), 65-69. Retrieved from

Oransakunwong, S., Wasanapiarnpong, T., Santiwong, B. and Linsuwanont, P. "The Development of Bioceramic Root Canal Sealer", CM Dent J, vol.43, no. 1, pp. 65-69, Jan. 2022.

Oransakunwong, S., Wasanapiarnpong, T., Santiwong, B., et al. "The Development of Bioceramic Root Canal Sealer." CM Dent J, vol.43, no. 1, Jan. 2022, pp. 65-69,