Hemolytic Assessment of Geranylgeraniol/ Clindamycin-Loaded Composite Hydrogel
Objectives: This study investigated the hemolytic activity of a geranylgeraniol (GGOH)/ clindamycin (CDM)-loaded composite hydrogel developed as a potential preventive measure for medication-related osteonecrosis of the jaw associated with bisphosphonate (MRONJ-B).
Methods: The surface and structural properties of the drug-loaded hydrogel were characterized using stereomicroscopy, scanning electron microscopy, confocal fluorescence microscopy, and micro-computed tomography. The hemolytic activity of the drug-free (control) and drug-loaded hydrogels was comparatively assessed using three in vitro models: washed red blood cells (RBCs), diluted whole blood, and clotted whole blood, to evaluate the impact of the plasma and fibrin matrix on the hemolytic potential of the materials.
Results: The results showed that the drug-loaded hydrogel exhibited an average pore size of 38±24 μm, with a porosity of 84±4.3% and an interconnectivity of 99.9±0.1%. The control hydrogel demonstrated minimal hemolysis (<0.5%) in all test models. While the drug-loaded hydrogel exhibited increased hemolysis (>5%) in both washed RBC and diluted whole blood models, the presence of natural fibrin formation and platelet lysate significantly mitigated the hydrogel's hemolytic activity. Notably, platelet lysate encapsulation provided superior RBC protection compared to natural fibrin within the clotted whole blood model. Histological analysis of the drug-loaded hydrogel in ex vivo cultures with clotted whole blood did not reveal significant RBC toxicity.
Conclusions: These findings suggested that the drug-loaded composite hydrogel may be suitable for further in vivo investigations of its biocompatibility and efficacy in preventing MRONJ-B.
1. Ruggiero SL, Dodson TB, Aghaloo T, Carlson ER, Ward BB, Kademani D. American association of oral and maxillofacial surgeons' position paper on medication-related osteonecrosis of the jaws-2022 update. J Oral Maxillofac Surg. 2022;80(5):920-43.
2. Sungkhaphan P, Thavornyutikarn B, Muangsanit P, Kaewkong P, Kitpakornsanti S, Pornsuwan S, et al. Dual-functional drug delivery system for bisphosphonate-related osteonecrosis prevention and its bioinspired releasing model and in vitro assessment. ACS Omega. 2023;8(29):26561-76.
3. Thavornyutikarn B, Sungkhaphan P, Kaewkong P, Pornsuwan S, Risangud N, Singhatanadgit W, et al. Biodegradable dual-function nanocomposite hydrogels for prevention of bisphosphonate-related osteonecrosis of the jaw. ACS Appl Bio Mater. 2023;6(4):1658-75.
4. Ziebart T, Pabst A, Klein MO, Kämmerer P, Gauss L, Brüllmann D, et al. Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clini Oral Investig. 2011;15:105-11.
5. Pabst A, Krüger M, Sagheb K, Ziebart T, Jacobs C, Blatt S, et al. The influence of geranylgeraniol on microvessel sprouting after bisphosphonate substitution in an in vitro 3D-angiogenesis assay. Clini Oral Investig. 2017;21:771-8.
6. Singhatanadgit W, Hankamolsiri W, Janvikul W. Geranylgeraniol prevents zoledronic acid-mediated reduction of viable mesenchymal stem cells via induction of Rho-dependent YAP activation. R Soc Open Sci. 2021;8(6):202066.
7. Sungkhaphan P, Thavornyutikarn B, Kaewkong P, Pongkittiphan V, Pornsuwan S, Singhatanadgit W, et al. Antibacterial and osteogenic activities of clindamycin-releasing mesoporous silica/carboxymethyl chitosan composite hydrogels. R Soc Open Sci. 2021;8(9):210808.
8. Chow M, douglas, and bennett's. Infections of the oral cavity, neck, and head. Mandell, douglas, and bennett's principles and practice of infectious diseases: Elsevier; 2015. p.789-805. e2.
9. Shibahara T. Antiresorptive agent-related osteonecrosis of the jaw (ARONJ): a twist of fate in the bone. Tohoku J Exp Med. 2019;247(2):75-86.
10. Fan L, Yi J, Tong J, Zhou X, Ge H, Zou S, et al. Preparation and characterization of oxidized konjac glucomannan/ carboxymethyl chitosan/graphene oxide hydrogel. Int J Biol Macromol. 2016;91:358-67.
11. Wahid F, Yin JJ, Xue DD, Xue H, Lu YS, Zhong C, et al. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2016;88:273-9.
12. Chen L, Du Y, Tian Z, Sun L. Effect of the degree of deacetylation and the substitution of carboxymethyl chitosan on its aggregation behavior. J Polym Sci Part B: Polym Phys. 2005;43(3):296-305
13. Zhang L, Guo J, Zhou J, Yang G, Du Y. Blend membranes from carboxymethylated chitosan/alginate in aqueous solution. J Appl Polym Sci. 2000;77(3):610-6.
14. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5(7):5717-28.
15. Davidson S, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV. Bioinspired silica offers a novel, green, and biocompatible alternative to traditional drug delivery systems. ACS Biomate Sci Eng. 2016;2(9):1493-503.
16. Joglekar M, Roggers RA, Zhao Y, Trewyn BG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. Rsc Adv. 2013;3(7):2454-61.
17. Lopes MV, Desoti VC, Caleare AdO, Ueda-Nakamura T, Silva SO, Nakamura CV. Mitochondria superoxide anion production contributes to geranylgeraniol-induced death in leishmania amazonensis. Evid Based Complement Alternat
Med. 2012;2012(1):298320.
18. Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99.
19. Humar R, Schaer DJ, Vallelian F. Erythrophagocytes in hemolytic anemia, wound healing, and cancer. Trends Mol Med. 2022;28(11):906-15.
20. Dimitrov JD, Roumenina LT, Perrella G, Rayes J. Basic mechanisms of hemolysis-associated thrombo-inflammation and immune dysregulation. Arterioscler Thromb Vasc Biol. 2023;43(8):1349-61.
21. Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34(8):1731-8.
22. Manček-Keber M, Frank-Bertoncelj M, Hafner-Bratkovič I, Smole A, Zorko M, Pirher N, et al. Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Sci Signal. 2015;8(381):ra60.
23. Qian Q, Nath KA, Wu Y, Daoud TM, Sethi S. Hemolysis and acute kidney failure. Am J Kidney Dis. 2010;56(4):780-4.
24. Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, et al. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect. 2009;117(2):241-7.
25. Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013;172(2):456-66.
26. ISO. ISO 10993-4: biological evaluation of medical devices part 4—selection of tests for interactions with blood. International Organization for Standardization: Geneva, Switzerland. 2017.
27. Dalal BI, Brigden ML. Artifacts that may be present on a blood film. Clin Lab Med. 2002;22(1):81-100.
28. Baldwin JM, Lucy JA. Chemically induced fusion of erythrocyte membranes. Methods in enzymology. 220: Elsevier; 1993. p.161-73.
29. Ahkong Q, Fisher D, Tampion W, Lucy J. The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol. Biochem J. 1973;136(1):147-55.
30. Behling-Kelly E. Identifying erythrocyte injury in toxicology studies. Toxicol Pathol. 2022;50(7):883-5.
31. Li X, Kong X, Zhang Z, Nan K, Li L, Wang X, et al. Cytotoxicity and biocompatibility evaluation of N, O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int J Biol Macromol. 2012;50(5):1299-305.
32. Fu D, Han B, Dong W, Yang Z, Lv Y, Liu W. Effects of carboxymethyl chitosan on the blood system of rats. Biochem Biophys Res Commun. 2011;408(1):110-4.
33. Liu L, Lv Q, Zhang Q, Zhu H, Liu W, Deng G, et al. Preparation of carboxymethyl chitosan microspheres and their application in hemostasis. Disaster Med Public Health Prep. 2017;11(6):660-7.
34. Gray JE, Weaver RN, Moran J, Feenstra ES. The parenteral toxicity of clindamycin 2-phosphate in laboratory animals. Toxicol Appl Pharmacol. 1974;27(2):308-21.
35. Chen GP, Yang J, Qian GF, Xu WW, Zhang XQ. Geranylgeranyl transferase-i knockout inhibits oxidative injury of vascular smooth muscle cells and attenuates diabetesaccelerated atherosclerosis. J Diabetes Res. 2020;2020(1): 7574245.
36. Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13(8):1262.
37. Kristiansson A, Gram M, Flygare J, Hansson SR, Åkerström B, Storry JR. The role of α1-microglobulin (A1M) in erythropoiesis and erythrocyte homeostasis—therapeutic opportunities in hemolytic conditions. Int J Mol Sci. 2020;21(19):7234.
38. Taverna M, Marie AL, Mira JP, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4.
39. Higashi Y, Pandey A, Goodwin B, Delafontaine P. Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta. 2013;1832(3):391-9.
40. Yoon JY, Vu HT, Lee JH, Shin JS, Kim HW, Lee HH, et al. evaluation of human platelet lysate as an alternative to fetal bovine serum for potential clinical applications of stem cells from human exfoliated deciduous teeth. Cells. 2024;13(10):847.
41. ASTM International. Standard practice for assessment of hemolytic properties of materials. ASTM F756-08. West Conshohocken (PA): ASTM International; 2008.
42. Qin Z, Babu VS, Li Y, Shi F, Zhan F, Liu C, et al. Hemoglobin mediates inflammation and apoptosis in the head-kidney macrophages of grass carp (Ctenopharyngodon idella). Aquaculture. 2022;557:738281.
43. Riedmann K, Meegan J, Cervantes-Cruz Y, Ware L, Bastarache J. Cell-free hemoglobin induces vascular and mitochondrial dysfunction in the pulmonary endothelium in an oxidation-state dependent manner. Physiology. 2024;39(S1):1869.
44. Sabino RM, Kauk K, Movafaghi S, Kota A, Popat KC. Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces. Nanomedicine. 2019;21:102046.
45. Sabino RM, Popat KC. Evaluating whole blood clotting in vitro on biomaterial surfaces. Bio Protoc. 2020;10(3):e3505-e.