In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite

Objectives: To evaluate the nanohardness, mineral loss and lesion depth of the enamel adjacent to different restorative materials in conjugation with artificial caries induction.

Methods: Thirty-six human premolars with a prepared cylindrical cavity of 2 mm in diameter and depth. The specimens were randomly divided into 6 groups according to the restorative materials: Fuji IX GP®(GI), Cention N(CN) and Clearfil™ AP-X ES-2(RC) and adhesive systems: Clearfil™ SE bond X(CSE) and Adper™ Scotchbond™ multi-purpose (SBMP). Group 1; GI, Group 2; CN, Group 3; CN+CSE, Group 4; CN+SBMP, Group 5; RC+CSE and Group 6; RC+SBMP. All restored specimens were subjected to 14 days artificial caries induction then sectioned to two cross-sectional specimens (n=12). Nanohardness was evaluated at the depths of 10, 60, 110 and 160 μm from the enamel surface. Mineral loss and lesion depth of the enamel was evaluated at 10, 260, 510 and 760 μm from the tooth-restoration interface. Nanohardness data were analyzed using Wilcoxon-signed rank and Kruskal-Wallis test (p<0.05). Mineral loss and lesion depth data were analyzed using one-way ANOVA and Dunnett T3 (p<0.05).

Results: At the depth of 10 and 60 μm, the dissolution of enamel surface was observed for RC groups. At the depth of 10 μm, the nanohardness between the groups of GI and CN without adhesive showed no significant difference. At the distance of 10 μm from the tooth-restoration interface, the mineral loss and lesion depth of GI group showed no significant difference compared to those of the CN group.

Conclusions: Use of ion-releasing resin composite without adhesive exhibited a caries inhibition effect which was comparable to that of glass ionomer material.

1. Fisher J, Varenne B, Narvaez D, Vickers C. The minamata convention and the phase down of dental amalgam. Bull World Health Organ. 2018;96(6):436-8.

2. Arola D, Galles LA, Sarubin MF. A comparison of the mechanical behaviour of posterior teeth with amalgam and composite MOD restorations. J Dent. 2001;29(1):63-73.

3. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent. 1996;21(1):17-24.

4. Schneider LF, Moraes RR. Polymerization shrinkage stress. Dental composite materials for direct restorations. Vol I: Springer, Cham; 2018. 219-33.

5. Mjör IA, Qvist V. Marginal failures of amalgam and composite restorations. J Dent. 1997;25(1):25-30.

6. Wiegand A, Buchalla W, Attina T. Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343-62.

7. van Dijken JW, Kalfas S, Litra V, Oliveby A. Fluoride and mutans streptococci levels in plaque on aged restorations of resin-modified glass lonomer cement, compomer and resin composite. Caries Res. 1997;31(5):379-83.

8. Todd JC. Scientific Documentation: Cention N; Ivoclar- Press: Schaan, Liechtenstein. 2016:1–58.

9. Tiskaya M, Al-Eesa NA, Wong FSL, Hill RG. Characterization of the bioactivity of two commercial composites. Dent Mater. 2019;35(12):1757-68.

10. Serra MC, Cury JA. The in vitro effect of glass-ionomer cement restoration on enamel subjected to a demineralization and remineralization model. Quintessence Int. 1992;23(2):143-7.

11. Zou W, Hunter N, Swain MV. Application of polychromatic microCT for mineral density determination. J Dent Res. 2011;90(1):18-30.

12. Habelitz S, Marshall SJ, Marshall Jr GW, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol. 2001;46(2):173-83.

13. Ge J, Cui FZ, Wang XM, Feng HL. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomater. 2005;26(16):3333-9.

14. Ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982;16(3):201-10.

15. Arends J, Ten Bosch JJ. Demineralization and remineralization evaluation techniques. J Dent Res. 1992;71(3):924-8.

16. Larsen MJ, Pearce EIF. Saturation of human saliva with respect to calcium salts. Arch Oral Biol. 2003;48(4):317-22.

17. Frankenberger R, Garcia-Godoy F, Lohbauer U, Petschelt A, Krämer N. Evaluation of resin composite materials. Part I: in vitro investigations. Am J Dent. 2005;18(1):23-7.

18. Persson A, Lingstrom P, van Dijken JW. Effect of a hydroxyl ion-releasing composite resin on plaque acidogenicity. Caries Res. 2005;39(3):201-6.

19. Itota T, Nakabo S, Iwai Y, Konishi N, Nagamine M, Torii Y, et al. Effect of adhesives on the inhibition of secondary caries around compomer restorations. Oper Dent. 2001;26(5):445-50.

20. Tsuchiya S, Nikaido T, Sonoda H, Foxton RM, Tagami J. Ultrastructure of the dentin-adhesive interface after acidbase challenge. J Adhes Dent. 2004;6(3):183-90.

21. Takagiki T, Nikaido T, Tsuchiya S, Ikeda M, Foxton RM, Tagami J. Effect of hybridization on bond strength and adhesive interface after acid-base challenge in 4-META/ MMA-TBB resin. Dent Mater J. 2009;28(2):185-93.

22. Nurrohman H, Nikaido T, Takagaki T, Sadr A, Ichinose S, Tagami J. Apatite crystal protection against acid-attack beneath resin–dentin interface with four adhesives: TEM and crystallography evidence. Dent Mater. 2012;28(7):89-98.

23. Li N, Nikaido T, Takagaki T, Sadr A, Makishi P, Chen J, et al. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance. J Dent. 2010;38(9):722-30.

24. Willems G, Celis J, Lambrechts P, Braem M, Vanherle G. Hardness and young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res. 1993;27(6):747-55.

25. Angker L, Swain MV. Nanoindentation: application to dental hard tissue investigations. J Mater Res. 2006;21(8):1893-905.

26. Kreulen CM, de Soet JJ. In vivo cariostatic effect of resin modified glass ionomer cement and amalgam on dentine. Caries Res. 1997;31(5):384-9.

27. Ferracane JL, Mitchem JC, Adey JD. Fluoride penetration into the hybrid layer from a dentin adhesive. Am J Dent. 1998;11(1):23-8.

28. Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou-Antoniades M, Kotsanos N. In vitro inhibition of enamel demineralisation by fluoride-releasing restorative materials and dental adhesives. Oral Health Prev Dent. 2016;14(4):371-80.

29. Tantbirojn D, Douglas WH, Versluis A. Inhibitive effect of a resin-modified glass lonomer cement on remote enamel artificial caries. Caries Res. 1997;31(4):275-80.

30. Dijkman GE, de Vries J, Lodding A, Arends J. Long-term fluoride release of visible light-activated composites in vitro: a correlation with in situ demineralisation data. Caries Res. 1993;27(2):117-23.

31. Itota T, Nakabo S, Narukami T, Tashiro Y, Torii Y, McCabe JF, et al. Effect of two-step adhesive systems on inhibition of secondary caries around fluoride-releasing resin composite restorations in root dentine. J Dent. 2005;33(2):147-54.

32. Yun F, Swain MV, Chen H, Cairney J, Qu J, Sha G, et al. Nanoscale pathways for human tooth decay–central planar defect, organic-rich precipitate and high-angle grain boundary. Biomaterials. 2020;235:119748.doi: 10.1016/j.biomaterials.2019.

33. Guerra F, Mazur M, Nardi GM, Corridore D, Pasqualotto D, Rinado F, et al. Dental hypomineralized enamel resin infiltration. clinical indications and limits. Senses Sci. 2015;2(4):135-9.

34. Sadyrin E, Swain M, Mitrin B, Rzhepakovsky I, Nikolaev A, Irkha V, et al. Characterization of enamel and dentine about a white spot lesion: mechanical properties, mineral density, microstructure and molecular composition. Nanomaterials (Basel). 2020;10(9):1889. doi: 10.3390/nano10091889.

35. Huang TT, He LH, Darendeliler MA, Swain MV. Nano-indentation characterisation of natural carious white spot lesions. Caries Res. 2010;44(2):101-7.

36. Cochrane NJ, Anderson P, Davis GR, Adams GG, Stacey MA, Reynolds EC. An x-ray microtomographic study of natural white-spot enamel lesions. J Dent Res. 2012;91(2):185-91.

37. Huang TT, He LH, Darendeliler MA, Swain MV. Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation. Acta Biomater. 2010;6(12):4553-9.

Kuphasuk S, Kunawarote S. In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite: Original articles. CM Dent J [Internet]. 2022 May 30 [cited 2024 Apr 30];43(2):50-61. Available from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=170

Kuphasuk, S. & Kunawarote, S. (2022). In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite. CM Dent J, 43(2), 50-61. Retrieved from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=170

Kuphasuk, S., and Kunawarote Sitthikorn. 2022. "In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite." CM Dent J, 43(2), 50-61. https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=170

Kuphasuk, S. et al. 2022. 'In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite', CM Dent J, 43(2), 50-61. Retrieved from https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=170

Kuphasuk, S. and Kunawarote, S. "In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite", CM Dent J, vol.43, no. 2, pp. 50-61, May. 2022.

Kuphasuk Sorrawis , Kunawarote Sitthikorn "In vitro Caries Inhibition in Enamel Adjacent to Ion-releasing Resin Composite." CM Dent J, vol.43, no. 2, May. 2022, pp. 50-61, https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=170